Lesson 06

BoW, Optical Flow, Lucas-Kanade, Background Subtraction

Ing. Marek Hrúz, Ph.D.
Katedra Kybernetiky
Fakulta aplikovaných věd
Západočeská univerzita v PIzni

Bag of Words

Optical Flow

Lucas-Kanade approach

Background subtraction

Bag of Words

- is an image classification method using ideas from document classification
- uses a sparse histogram of words from a vocabulary - local image features
- WORD:
- a word is a local feature
- the feature should be independent on scale, rotation, translation, intensity and contrast changes - SIFT
- the features will have some diversity - like normal words
- we want to obtain one representative form of the word

Vocabulary

- all features are put together - we don't know what the individual words are yet
- the features are clustered using k-means
- ' k ' will define the size of the vocabulary

Image descriptor

- we now have the words and vocabulary defined
- SIFT analysis will provide us with features from the image
- each SIFT is classified as a word using nearest neighbor
- the image is represented as a histogram of these words

DEPARTMENT OF CYBERNETICS

Image classification

- there are several options how to classify the unknown vector Machine Learning - but not yet
- our vector is the histogram of the local features - words
- we have defined several measures for comparing histogram LBP histogram comparison
- in BoW an angle between the histograms is used

$$
\begin{equation*}
\cos \alpha=\frac{H^{1} \cdot H^{2}}{\left\|H^{1}\right\|\left\|H^{2}\right\|} \tag{1}
\end{equation*}
$$

- the smaller the angle the more similar the histograms are

DEPARTMENT OF CYBERNETICS

Optical Flow

- if a camera moves in 3D scene, the apparent motion in the sequence is called optical flow
- describes the direction and the speed of the motion of features in an image
- the computation is based on two assumptions:

1. The observed brightness of any object point is constant over time.
2. Neighboring pixels in the image plain move in a similar manner.

Figure 14.6 Optical flow: (a) Time t_{1}, (b) time t_{2}, (c) opticREPADMMENT OF

- let $f(x, y, t)$ be a dynamic image function
- we want to observe the changes $(\delta x, \delta y)$ in consecutive frames meaning that $t=t+\delta t$
- for this reason we express the dynamic image function as a Taylor series

$$
\begin{equation*}
f(x+\delta x, y+\delta y, t+\delta t)=f(x, y, t)+\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial t} \delta t+O\left(\partial^{2}\right) \tag{2}
\end{equation*}
$$

- since the pixel at (x, y, t) will move to $(x+\delta x, y+\delta y, t+\delta t)$ and we will assume the intensity of the pixel is constant, we can write

$$
\begin{equation*}
f(x+\delta x, y+\delta y, t+\delta t)=f(x, y, t) \tag{3}
\end{equation*}
$$

- and we can substitute to the prior equation (with notation $\left.\frac{\partial f}{\partial x}=f_{x}\right)$

$$
\begin{equation*}
-f_{t}=f_{x} \frac{\delta x}{\delta t}+f_{y} \frac{\delta y}{\delta t} \tag{4}
\end{equation*}
$$

- we have an image in time t and image in time $t+\delta t$
- the goal is to compute the velocity $c=\left(\frac{\delta x}{\delta t}, \frac{\delta y}{\delta t}\right)=(u, v)$ in every point of the image function
- recall: $-f_{t}=f_{x} \frac{\delta x}{\delta t}+f_{y} \frac{\delta y}{\delta t}$
- the partial derivatives of the image function can be approximated directly from the image itself
- the spatial derivatives f_{x}, f_{y} refer to changes in the brightness pattern, high values mean corners
- the time derivate f_{t} describes the change of brightness in time
- the equation has two unknown parameters and thus additional constrains need to be implemented

Lucas-Kanade approach

- this method sets the additional conditions to compute the optical flow
- the method assumes that pixels in local neighborhood move in similar matter
- thus the optical flow equations can be computed in a least squares fashion
- this means that the optical flow equation must hold for all pixels in a window centered at (x, y)
- in other words the flow vector (u, v) must satisfy:

$$
\begin{gather*}
f_{x}\left(q_{1}\right) u+f_{y}\left(q_{1}\right) v=-f_{t}\left(q_{1}\right) \\
f_{x}\left(q_{2}\right) u+f_{y}\left(q_{2}\right) v=-f_{t}\left(q_{2}\right) \tag{5}\\
\vdots \\
f_{x}\left(q_{n}\right) u+f_{y}\left(q_{n}\right) v=-f_{t}\left(q_{n}\right)
\end{gather*}
$$

- the equation can be written in matrix form $A v=b$

$$
A=\left[\begin{array}{cc}
f_{x}\left(q_{1}\right) & f_{y}\left(q_{1}\right) \tag{6}\\
f_{x}\left(q_{2}\right) & f_{y}\left(q_{2}\right) \\
\vdots & \vdots \\
f_{x}\left(q_{n}\right) & f_{y}\left(q_{n}\right)
\end{array}\right] \quad v=\left[\begin{array}{c}
u \\
v
\end{array}\right] \quad b=\left[\begin{array}{c}
-f_{t}\left(q_{1}\right) \\
-f_{t}\left(q_{2}\right) \\
\vdots \\
-f_{t}\left(q_{n}\right)
\end{array}\right]
$$

- the least squares method then states

$$
\begin{gather*}
A^{T} A v=A^{T} b \\
v=\left(A^{T} A\right)^{-1} A^{T} b \tag{7}
\end{gather*}
$$

- in this scenario all the pixels in the neighborhood have the same importance
- however in practice it is beneficial to weight the pixels so that the further they are from the center the less weight they have

$$
\begin{equation*}
A^{T} W A v=A^{T} W b \tag{8}
\end{equation*}
$$

- W is usually set to be Gaussian

Barber's pole

Motion field

Optical flow

Lucas Kanade tracking applications

- https://www.youtube.com/watch?v=8VbyICRn3il
- https://www.youtube.com/watch?v=oL67qe-Fhps

Background subtraction

- is a method of computer vision which extracts the moving foreground from an image sequence
- requires static camera
- the method computes differences between an actual frame and a reference frame
- the image is divided into segments S - pixel, superpixel, region, ...
- each segment S_{i} is labeled either as 1 - movement occurs in the segment, or 0 - segment is background

$$
F_{i}(t)=\left\{\begin{array}{cc}
1 & \text { if } d\left(S_{i}(t), B\right)>\tau \tag{9}\\
0 & \text { otherwise }
\end{array}\right.
$$

Basic approach

- easiest way of obtaining the background model B is to model the image in which no movement is present
- such image will be composed only of segments that are zero: $\forall i: F_{i}=0$
- the model can be adapted with time:

$$
\begin{equation*}
B_{i}(t+1)=(1-\alpha) B_{i}(t)+\alpha S_{i}(t) \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
d_{0} & =\left|S_{i}(t)-B_{i}(t)\right| \\
d_{1} & =\left|S_{i}(t)^{R}-B_{i}(t)^{R}\right|+\left|S_{i}(t)^{G}-B_{i}(t)^{G}\right|+\left|S_{i}(t)^{B}-B_{i}(t)^{B}\right| \\
d_{2} & =\left(S_{i}(t)^{R}-B_{i}(t)^{R}\right)^{2}+\left(S_{i}(t)^{G}-B_{i}(t)^{G}\right)^{2}+\left(S_{i}(t)^{B}-B_{i}(t)^{B}\right)^{2} \\
d_{\infty} & =\max \left\{\left|S_{i}(t)^{R}-B_{i}(t)^{R}\right|,\left|S_{i}(t)^{G}-B_{i}(t)^{G}\right|,\left|S_{i}(t)^{B}-B_{i}(t)^{B}\right|\right\}
\end{aligned}
$$

Modeling the background

- Gaussian distribution

- for the training we need samples - in time and in space
- this requires to obtain more images of the background in time
- each segment S_{i} has a color distribution in time and space

$$
\left[\begin{array}{ccccc}
s_{i 0}\left(t_{0}\right) & s_{i 1}\left(t_{0}\right) & s_{i 2}\left(t_{0}\right) & \ldots & s_{i N}\left(t_{0}\right) \tag{11}\\
s_{i 0}\left(t_{1}\right) & s_{i 1}\left(t_{1}\right) & s_{i 2}\left(t_{1}\right) & \ldots & s_{i N}\left(t_{1}\right) \\
\vdots & & & & \\
s_{i 0}\left(t_{n}\right) & s_{i 1}\left(t_{n}\right) & s_{i 2}\left(t_{n}\right) & \ldots & s_{i N}\left(t_{n}\right)
\end{array}\right]
$$

- note: if the segment consist only of one pixel, we have:

$$
\left[\begin{array}{lllll}
s_{i}\left(t_{0}\right) & s_{i}\left(t_{1}\right) & s_{i}\left(t_{2}\right) & \ldots & s_{i}\left(t_{n}\right) \tag{12}
\end{array}\right]^{T}
$$

- nevertheless we have our training data as a sample of the background in given position
- from this sample we can approximate the distribution - in this case a Gaussian distribution - μ, Σ

$$
\begin{gather*}
\mu_{i}=\frac{1}{N} \sum_{j, t} s_{i j}(t) \tag{13}\\
\Sigma_{i}=\frac{1}{N-1} \sum_{j, t}\left(s_{i j}(t)-\mu_{i}\right)^{T}\left(s_{i j}(t)-\mu_{i}\right) \tag{14}\\
\eta\left(\mathbf{S}_{i}(t), \boldsymbol{\mu}_{i}, \Sigma_{i}\right)=\frac{1}{(2 \pi)^{\frac{K}{2}}\left|\Sigma_{i}\right|^{\frac{1}{2}}} \cdot e^{-\frac{1}{2}\left(\mathbf{I}_{s, t}-\boldsymbol{\mu}_{i}\right)^{\top} \Sigma_{i}^{-1}\left(\mathbf{I}_{s, t}-\boldsymbol{\mu}_{i}\right)}, \tag{15}\\
\boldsymbol{\mu}_{i}(t+1)=(1-\alpha) \boldsymbol{\mu}_{i}(t)+\alpha \mathbf{S}_{i}(t), \\
\Sigma_{i}(t+1)=(1-\alpha) \Sigma_{i}(t)+\alpha\left(\mathbf{S}_{i}(t)-\boldsymbol{\mu}_{i}(t)\right)^{\top}\left(\mathbf{S}_{i}(t)-\boldsymbol{\mu}_{i}(t)\right)
\end{gather*}
$$

- the distance is computed as Mahalanobis distance

$$
d\left(\mathbf{I}_{s, t}, \mu_{s, t}\right)=\sqrt{\left.\left(\mathbf{I}_{s, t}-\mu_{s, t}\right)^{\top} \Sigma_{s, t}^{-1}\left(\mathbf{I}_{s, t}-\mu_{s, t}\right) \text {).pararmerirer }\right)}
$$

Gaussian mixture model

- sometimes the background can be dynamic
- the color of pixels can change in time, but still is considered as background (running water, moving trees, ...)
- we will model the multimodal density as GMM

$$
\begin{aligned}
& P\left(S_{i}(t)\right)=\sum_{k=1}^{K} \omega_{k, i, t} \cdot \eta\left(\mathbf{S}_{i}(t), \boldsymbol{\mu}_{i}(t), \Sigma_{i}(t)\right) \\
& \omega_{k, s, t+1}=(1-\alpha) \omega_{k, s, t}+\alpha \\
& \boldsymbol{\mu}_{i}(t+1)=(1-\alpha) \boldsymbol{\mu}_{i, s, t}+\alpha \mathbf{S}_{i}(t) \\
& \Sigma_{i}(t+1)=(1-\alpha) \Sigma_{i}(t)+\alpha\left(\mathbf{S}_{i}(t)-\boldsymbol{\mu}_{i}(t)\right)^{\top}\left(\mathbf{S}_{i}(t)-\boldsymbol{\mu}_{i}(t)\right)
\end{aligned}
$$

- in this case we cannot compute distance, but must compute probability

Modeling using Histogram

- in this case the segment must consist of several pixels
- from these pixels a histogram is computed
- the distance of histograms of segments in consecutive frames is computed via Pearson's correlation

$$
\begin{gather*}
d\left(H_{1}, H_{2}\right)=1-r_{H_{1}, H_{2}}, \tag{18}\\
r_{H_{1}, H_{2}}=\frac{\sum_{i=1}^{N}\left(H_{1}^{i}-\bar{H}_{1}\right)\left(H_{2}^{i}-\bar{H}_{2}\right)}{\sqrt{\sum_{i=1}^{N}\left(H_{1}^{i}-\bar{H}_{1}\right)^{2} \cdot \sum_{i=1}^{N}\left(H_{2}^{i}-\bar{H}_{2}\right)^{2}}} \tag{19}
\end{gather*}
$$

- we can use other metrics: recall Local Binary Patterns histogram comparison

Usage

- https://www.youtube.com/watch?v=QSfcrbtOaQw

