Lesson 07 Classification, Boosting, Support Vector Machine, Decision Trees

Ing. Marek Hrúz, Ph.D.

Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

Lesson 07

Classification

Ada-Boost

Support Vector Machine

Lesson 07

Principles of Classification

- ► classification vs. clustering with/without teacher
- Feature vector
- is an *n*-dimensional vector describing attributes of the classified object/event
- ► for the purpose of generality lets assume that a feature vector $x \in \mathcal{R}^n$
- ► the task of a binary classificator is to divide the Rⁿ space into two parts so that (ideally) all vectors from one class lie in one part of the space and vice versa
- ► generally a hyperplane is used as a solution of this problem

• ω_i is the *i*th class, $X \in \mathcal{R}^n$ is the space of all classes

$$\begin{split} & \omega_{1,\dots,N} \quad \subset X, \\ & \bigcup_{i=1}^{N} \omega_i = X, \\ & \omega_i \cap \omega_j \quad = \emptyset, \text{pro} \quad i, j = 1, \dots, N, \quad i \neq j, \end{split}$$

DEPARTMENT OF CYBERNETICS 3/46

- Ada-Boost (short for Adaptive Boosting) is an algorithm creating a strong classifier as a combination of weak classifiers
- ► a weak classifier is such classifier that performs at better than a random choice, i.e. the error e < 0.5 for a binary classification problem
- lets denote a weak classifier as $h(x) \rightarrow \{-1, 1\}$
- ► a strong classifier is a linear combination of weak classifiers, lets denote it as H(x) = sign ∑_{t=1}^T α_th_t(x)

Algorithm

- ▶ we have training data available $\{(x^{(i)}, y^{(i)})\}_1^N, y \rightarrow \{-1; 1\}$
- ► initialize weights corresponding to individual feature vectors as $\omega_0(i) = 1/N$
- for $t = 1, \ldots, T$:
- compute $h_t = \operatorname{argmin}_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^N \omega_i [y_i \neq h_j(x_i)]$
- if $\epsilon_t \ge 0.5$ then stop the classifier failed to train
- set $\alpha_t = \frac{1}{2} \log \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- update $\omega_{t+1}(i) = \omega_t(i) \exp(-\alpha_t y_i h_t(x_i))/Z_t$
- iterate until $\epsilon_t = 0$
- the final strong classifier $H(x) = sign \sum_{t=1}^{T} \alpha_t h_t(x)$

Cascade Ada-Boost

- is a special framework for ada-boost
- ▶ the goal is to make the recognition faster but still efficient
- the decision is made sequentially this allows to refuse some features in very early stages

- in previous sections we have shown how to compute a decision boundary
- ► in the case of linearly separable classes there exist a lot of boundaries that will classify the training set with 100% precision
- ► the question is: Is there (in some sense) an optimal decision boundary?

- in previous sections we have shown how to compute a decision boundary
- ► in the case of linearly separable classes there exist a lot of boundaries that will classify the training set with 100% precision
- ► the question is: Is there (in some sense) an optimal decision boundary?
- The criterion: The distance between the boundary and the nearest training vector is maximized

- we have a training set $\{(x^{(i)}, y^{(i)})\}_1^N, y \to \{-1, 1\}$
- \blacktriangleright we have to find the parameters of a decision boundary ω (previously $\Theta)$

$$\boldsymbol{\omega}^{\top} \mathbf{x} > \mathbf{0}, \quad \text{pro } \forall \mathbf{x} \in \omega_1, \\ \boldsymbol{\omega}^{\top} \mathbf{x} < \mathbf{0}, \quad \text{pro } \forall \mathbf{x} \in \omega_2.$$

► the decision boundary is then defined as:

$$g(\mathbf{x}) = \boldsymbol{\omega}^{\top} \mathbf{x} + \omega_0 = 0, \qquad (1)$$

- as said, SVM tries to find the optimal boundary based on the distances from the training data
- with some normalization and math this can be achieved relatively easily

• we want to find such parameters ω that will satisfy:

$$\boldsymbol{\omega}^{\top} \mathbf{x} + \boldsymbol{\omega}_0 \geq +1, \quad \text{pro } \forall \mathbf{x} \in \boldsymbol{\omega}_1, \\ \boldsymbol{\omega}^{\top} \mathbf{x} + \boldsymbol{\omega}_0 \leq -1, \quad \text{pro } \forall \mathbf{x} \in \boldsymbol{\omega}_2.$$

- ► and we know that the distance between the hyperplanes satisfying the equality in the equations above will be ²/_{||u||}
- we want this distance to be maximized
- ► this leads to the criterion $J = \min ||\omega||$ which for the math sake will be changed to $J = \min \frac{1}{2} ||\omega||^2$
- but with the condition of good classification

$$y_i\left(\boldsymbol{\omega}^{\top}\mathbf{x}_i+\omega_0\right)\geq 1,\quad i=1,2,\ldots,N.$$
 (2)

► the vectors x_i that satisfy y_i (ω^Tx_i + ω₀) = 1 are called support vectors

Optimization of the SVM criterion

► to optimize a criterion with conditions we make use of the Lagrangian multiplicator

$$\mathcal{L}(\boldsymbol{\omega},\omega_{0},\boldsymbol{\lambda}) = \frac{1}{2}\boldsymbol{\omega}^{\top}\boldsymbol{\omega} - \sum_{i=1}^{N}\lambda_{i}\left[y_{i}\left(\boldsymbol{\omega}^{\top}\boldsymbol{x}_{i}+\omega_{0}\right)-1\right] \quad (3)$$

- \blacktriangleright we need to find the minimum of ${\cal L}$
- we use partial derivations

$$\frac{\partial}{\partial \boldsymbol{\omega}} \mathcal{L}(\boldsymbol{\omega}, \omega_0, \boldsymbol{\lambda}) = 0 \tag{4}$$

$$\frac{\partial}{\partial \omega_0} \mathcal{L}(\boldsymbol{\omega}, \omega_0, \boldsymbol{\lambda}) = 0$$
 (5)

 to optimize a criterion with conditions we make use of the Lagrangian multiplicator

$$\mathcal{L}(\boldsymbol{\omega},\omega_{0},\boldsymbol{\lambda}) = \frac{1}{2}\boldsymbol{\omega}^{\top}\boldsymbol{\omega} - \sum_{i=1}^{N}\lambda_{i}\left[y_{i}\left(\boldsymbol{\omega}^{\top}\mathbf{x}_{i}+\omega_{0}\right)-1\right] \quad (6)$$

this leads to the solution

$$\omega = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i, \qquad (7)$$
$$0 = \sum_{i=1}^{N} \lambda_i y_i. \qquad (8)$$

Dual form

- ► we make use of the dual form of the problem
- we take the primal solution and substitute it to the primal problem and find the maximum

$$\min_{\boldsymbol{\omega},\omega_{0}}\left(\frac{1}{2}\boldsymbol{\omega}^{\top}\boldsymbol{\omega}-\sum_{i=1}^{N}\lambda_{i}\left[y_{i}\left(\boldsymbol{\omega}^{\top}\mathbf{x}_{i}+\omega_{0}\right)-1\right]\right)$$
(9)

becomes

$$\max_{\lambda} \left(\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \mathbf{x}_i^{\top} \mathbf{x}_j \right)$$
(10)

► maximizing this equation yields the solution for λ_i which when substituted to the equation ω = ∑_{i=1}^N λ_iy_ix_i give us the solution for ω

Soft-margin

▶ when the classes are linearly non-separable

- ▶ vectors that are correctly classified: $y_i (\boldsymbol{\omega}^\top \mathbf{x}_i + \omega_0) \ge 1$
- ► vectors that are correctly classified but lie in the margin: $0 \le y_i \left(\boldsymbol{\omega}^\top \mathbf{x} + \omega_0 \right) < 1$
- vectors that are misclassified: $y_i \left(\boldsymbol{\omega}^\top \mathbf{x} + \omega_0 \right) < 0$
- this can be written as:

$$y_i\left(\boldsymbol{\omega}^{\top}\mathbf{x}+\omega_0\right) \geq 1-\xi_i$$
 (11)

- ► the goal is to find the hyperplane that maximizes the margin and minimizes the number of points for which \$\xi > 1\$
- ► this leads to a new formulation of the problem:

$$J(\omega, \omega_0, \xi) = \frac{1}{2} \| \omega \|^2 + C \sum_{i=1}^{N} I(\xi_i), \quad (12)$$
$$I(\xi_i) = \begin{cases} 1, & \xi_i > 0, \\ 0, & \xi_i = 0. \end{cases} \quad (13)$$

Kernel Trick

▶ in the solution of the SVM:

$$\max_{\lambda} \left(\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \mathbf{x}_i^{\top} \mathbf{x}_j \right)$$
(14)

- ▶ we can see the dot product of *x_i*, *x_j*
- ▶ this can be efficiently written with the kernel trick as

$$\max_{\lambda} \left(\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j K\left(\mathbf{x}_i, \mathbf{x}_j\right) \right)$$
(15)

- this represents a transformation of the vectors into a higher dimension
- ► in this higher dimension the vectors can be linearly separable

Type of kernel	Formula	Note
Polynomial	$K\left(\mathbf{x}_{i},\mathbf{x}_{j} ight)=\left(\mathbf{x}_{i}\mathbf{x}_{j}+ heta ight)^{d}$	Parameter d and threshold θ is chosen by user.
Sigmoid kernel	$\mathcal{K}\left(\mathbf{x}_{i},\mathbf{x}_{j} ight)=tahh\left(\eta\mathbf{x}_{i}\mathbf{x}_{j}+ heta ight)$	Parameter η and threshold θ is chosen by user.
Gauss kernel Radial Basis Function	$\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = exp\left(-\frac{1}{2\sigma^2} \parallel \mathbf{x}_i - \mathbf{x}_j \parallel^2\right)$	Parameter σ is is chosen by user.
(RBF)		is chosen by user.

 \blacktriangleright non-linear classification method, the model is based on oriented graph \rightarrow tree

Lesson 07

- ► non-linear classification method, the model is based on oriented graph → tree
- belongs to a family of models Classification And Regression Tree (CART)

▶ method uses binary decision tree T consisting of nodes \rightarrow elements of feature vector $\mathbf{x} \in X$ are evaluated via a condition

 $<\frac{1}{2}$

- ► method uses binary decision tree T consisting of nodes → elements of feature vector x ∈ X are evaluated via a condition
- ► the tree then represents a gradual segmentation of the feature space X into disjunct regions

▶ each region represents one and only one class

- each region represents one and only one class
- ► the feature space is divided into rectangular regions (the region boundaries are parallel to axis of feature space)

- each region represents one and only one class
- ► the feature space is divided into rectangular regions (the region boundaries are parallel to axis of feature space)
- ▶ the inequations in nodes $x_i \leq \alpha$ is known as the decision rule

Classification and Learning:

- classification proceeds by comparing an unknown vector in the nodes of the tree
- ► the unknown vector then falls into one of the leafs which represents a class
- ► usually the learning is supervised (learning with teacher)
- ► straightforward way of training → the regions are constructed by comparing values in individual dimensions of the vector x with a threshold, x_i ≤ α, x_i is the ith element of the feature vector x and α is a threshold

Rules of the construction of the decision tree:

- ► the first node (root) of the tree contains the whole training set, X_s = X
- ► every next node s contains the subset X_s ⊂ X given by the decision rule of the previous node
- ► the decision rule divides X_s into two subsets X_{sT} (TRUE) and X_{sF} (FALSE)
- the division must fulfill:

$$X_{sT} \cap X_{sF} = \emptyset,$$

$$X_{sT} \cup X_{sF} = X_s.$$

▶ from all the possible divisions of X_s we pick just one, which is optimal given a division criterion

On choosing the decision rule

- ► the decision rule in the form x_i ≤ α_i, where α_i is a threshold α_i ∈ R divides the feature vectors based on the comparison of the ith dimension of the feature vector
- ► thanks to the train set X it is possible to enumerate a finite set of values for computing α_i
- ► for the *ith* dimension of feature space the values of all feature vectors on this dimension are ordered ascending → we have a finite set of values for computing the threshold
- ▶ in a given node we can enumerate all the possible values from all the dimensions x_i
- ► from this set of possible divisions (values of the threshold) we need to choose such that will divide the given set of feature vectors "the best" → we need a metric (eg. Gini impurity, variance reduction, information gain, ...)

Information gain approach

- ► let P (ω_i | s) be the probability of vectors in the set X_s belonging to the class ω_i
- ► the information gain is based around the entropy:

$$I(s) = -\sum_{i=1}^{M} P(\omega_i \mid s) \log_2 P(\omega_i \mid s).$$
 (16)

- ▶ this equation represents the rate of *entropy* of the node *s*
- ► the probabilities P (ω_i | s) are estimated by Nⁱ_s, where Nⁱ_s is the number of vectors in X_s belonging to class ω_i and N_s is the total number of vectors in the subset X_s

► after dividing X_s into two subsets X_{sT} a X_{sF}, where X_{sT} is composed of N_{sT} vectors and X_{sF} is composed of N_{sF} vectors, the information gain (of this division) is:

$$\Delta I(s) = I(s) - \frac{N_{sA}}{N_s} I(s_A) - \frac{N_{sN}}{N_s} I(s_N), \qquad (17)$$

where $I(s_A)$, $I(s_N)$ are the rates of entropy of nodes s_A and s_N

► the goal of the training is to find for each node s such division for which the information gain ΔI (s) is maximized

Stopping criterion

- is used to stop the process of division and thus creating a leaf node
- one option is to set the minimal number of training vectors in the node
- another option is to set a minimal information gain that is needed for the division

Classification

- ➤ a leaf node s represents the class for which there are the most training vectors in the leaf node
- each leaf node represents one class ω_i , where j is

$$j = \underset{i}{\operatorname{argmax}} P(\omega_i \mid s).$$
 (18)

Other options of constructing the tree:

- the decision rule can have the form of $\sum_{i=1}^{l} c_i x_i \leq \alpha$
- we are not looking for thresholds but for parameters of a hyperplane that divides the feature space into two subsets
- ► when considering two dimensional feature space and by rearranging the expression we obtain: c₁x + c₂y - α ≤ 0
- ▶ which is a general form of equation of a half-plane
- can be more suitable in some cases, but the construction of the tree is more complex

- ➤ a disadvantage of the decision tree is the sensitivity to the training set, so called bad generalization
- ► a small change in training set X results in change of topology of the whole decision tree T
- this drawback is compensated by using more trees in the training/testing phase
- principle: for one training set we construct several different trees

► the training set X is divided into several training sets X_(t) by utilizing the *bootstrap aggregating* algorithm

- ► the training set X is divided into several training sets X_(t) by utilizing the *bootstrap aggregating* algorithm
- ▶ each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \le N$, but the cardinality of the set remains N (the elements may repeat)

- ► the training set X is divided into several training sets X_(t) by utilizing the *bootstrap aggregating* algorithm
- ▶ each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \le N$, but the cardinality of the set remains N (the elements may repeat)
- ► for each set $X_{(n)}$ a decision tree is constructed Classification:

- ► the training set X is divided into several training sets X_(t) by utilizing the *bootstrap aggregating* algorithm
- ▶ each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \le N$, but the cardinality of the set remains N (the elements may repeat)
- for each set $X_{(n)}$ a decision tree is constructed

Classification:

► unknown vector **y** is inputed into all decision trees

- ► the training set X is divided into several training sets X_(t) by utilizing the *bootstrap aggregating* algorithm
- ▶ each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \le N$, but the cardinality of the set remains N (the elements may repeat)
- for each set $X_{(n)}$ a decision tree is constructed

- ► unknown vector **y** is inputed into all decision trees
- ► each decision tree outputs the class ω_i for the unknown vector y

- ► the training set X is divided into several training sets X_(t) by utilizing the *bootstrap aggregating* algorithm
- ▶ each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \le N$, but the cardinality of the set remains N (the elements may repeat)
- for each set $X_{(n)}$ a decision tree is constructed

- ► unknown vector **y** is inputed into all decision trees
- ► each decision tree outputs the class ω_i for the unknown vector y
- ► index *i* of the final class is chosen as the most frequent result, alternatively we may compute the probability for each class as $P(\omega_i | \mathbf{y}) = \frac{1}{T} \sum_{t=1}^{T} P_t(\omega_i | \mathbf{y})$

Náhodný rozhodovací les (Random Decision Forest)

- ► the same principle as the decision forest → lowering the sensitivity of classification on the training set
- ► ...but also
- ▶ goal 1: lowering the correlation of the trees in the forest
- goal 2: make the training faster (especially for higher dimensions)

Real-time classification of depth data from MS Kinect into individual parts of human body (Microsoft Research, 2011):

- 1. division of the training set X into T sets $X_{(t)}$ using bootstrap aggregating (the same)
- 2. we choose a parameter $m \ (m \ll l$, where l is the dimensionality of $\mathbf{x} \in X$)
- 3. for one tree in a given node \leftarrow the decision rule is determined based only on randomly chosen *m* dimensions
- 4. after the tree is trained, choose another m dimensions and train another tree, and so on

- \blacktriangleright an unknown vector ${\bf y}$ is inputed into all the trees
- ► index *i* of the final class is chosen as the most frequent result, alternatively we may compute the probability for each class as $P(\omega_i | \mathbf{y}) = \frac{1}{T} \sum_{t=1}^{T} P_t(\omega_i | \mathbf{y})$

Effect of the size of the forest:

Lesson 07

Effect of the depth of the trees:

Lesson 07

46 / 46