Lesson 07
 Classification, Boosting, Support Vector Machine, Decision Trees

Ing. Marek Hrúz, Ph.D.
Katedra Kybernetiky
Fakulta aplikovaných věd
Západočeská univerzita v PIzni

Classification

Ada-Boost

Support Vector Machine

Principles of Classification

- classification vs. clustering - with/without teacher
- Feature vector
- is an n-dimensional vector describing attributes of the classified object/event
- for the purpose of generality lets assume that a feature vector $x \in \mathcal{R}^{n}$
- the task of a binary classificator is to divide the \mathcal{R}^{n} space into two parts so that (ideally) all vectors from one class lie in one part of the space and vice versa
- generally a hyperplane is used as a solution of this problem
- ω_{i} is the $i^{t h}$ class, $X \in \mathcal{R}^{n}$ is the space of all classes

$$
\begin{aligned}
\omega_{1, \ldots, N} & \subset X \\
\bigcup_{i=1}^{N} \omega_{i} & =X, \\
\omega_{i} \cap \omega_{j} & =\emptyset, \text { pro } \quad i, j=1, \ldots, N, \quad i \neq j
\end{aligned}
$$

Ada-Boost

- Ada-Boost (short for Adaptive Boosting) is an algorithm creating a strong classifier as a combination of weak classifiers
- a weak classifier is such classifier that performs at better than a random choice, i.e. the error $\epsilon<0.5$ for a binary classification problem
- lets denote a weak classifier as $h(x) \rightarrow\{-1 ; 1\}$
- a strong classifier is a linear combination of weak classifiers, lets denote it as $H(x)=\operatorname{sign} \sum_{t=1}^{T} \alpha_{t} h_{t}(x)$

Algorithm

- we have training data available $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{1}^{N}, y \rightarrow\{-1 ; 1\}$
- initialize weights corresponding to individual feature vectors as $\omega_{0}(i)=1 / N$
- for $t=1, \ldots, T$:
- compute $h_{t}=\operatorname{argmin}_{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{N} \omega_{i}\left[y_{i} \neq h_{j}\left(x_{i}\right)\right]$
- if $\epsilon_{t} \geq 0.5$ then stop - the classifier failed to train
- set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- update $\omega_{t+1}(i)=\omega_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right) / Z_{t}$
- iterate until $\epsilon_{t}=0$
- the final strong classifier $H(x)=\operatorname{sign} \sum_{t=1}^{T} \alpha_{t} h_{t}(x)$

DEPARTMENT OF CYBERNETICS

DEPARTMENT OF CYBERNETICS

DEPARTMENT OF CYBERNETICS

DEPARTMENT OF
CYBERNETICS

DEPARTMENT OF CYBERNETICS

DEPARTMENT OF CYBERNETICS

DEPARTMENT OF CYBERNETICS

DEPARTMENT OF CYBERNETICS

DEPARTMENT OF CYBERNETICS

DEPARTMENT OF CYBERNETICS

DEPARTMENT OF CYBERNETICS

Cascade Ada-Boost

- is a special framework for ada-boost
- the goal is to make the recognition faster but still efficient
- the decision is made sequentially - this allows to refuse some features in very early stages

Support Vector Machine

- in previous sections we have shown how to compute a decision boundary
- in the case of linearly separable classes there exist a lot of boundaries that will classify the training set with 100% precision
- the question is: Is there (in some sense) an optimal decision boundary?

Support Vector Machine

- in previous sections we have shown how to compute a decision boundary
- in the case of linearly separable classes there exist a lot of boundaries that will classify the training set with 100% precision
- the question is: Is there (in some sense) an optimal decision boundary?
- The criterion: The distance between the boundary and the nearest training vector is maximized
- we have a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{1}^{N}, y \rightarrow\{-1 ; 1\}$
- we have to find the parameters of a decision boundary ω (previously Θ)

$$
\begin{array}{ll}
\boldsymbol{\omega}^{\top} \mathbf{x}>0, & \text { pro } \forall \mathbf{x} \in \omega_{1} \\
\boldsymbol{\omega}^{\top} \mathbf{x}<0, & \text { pro } \forall \mathbf{x} \in \omega_{2}
\end{array}
$$

- the decision boundary is then defined as:

$$
\begin{equation*}
g(\mathbf{x})=\boldsymbol{\omega}^{\top} \mathbf{x}+\omega_{0}=0 \tag{1}
\end{equation*}
$$

- as said, SVM tries to find the optimal boundary based on the distances from the training data
- with some normalization and math this can be achieved relatively easily

- we want to find such parameters $\boldsymbol{\omega}$ that will satisfy:

$$
\begin{array}{ll}
\boldsymbol{\omega}^{\top} \mathbf{x}+\omega_{0} \geq+1, & \text { pro } \forall \mathbf{x} \in \omega_{1}, \\
\boldsymbol{\omega}^{\top} \mathbf{x}+\omega_{0} \leq-1, & \text { pro } \forall \mathbf{x} \in \omega_{2} .
\end{array}
$$

- and we know that the distance between the hyperplanes satisfying the equality in the equations above will be $\frac{2}{\|\omega\|}$
- we want this distance to be maximized
- this leads to the criterion $J=\min \|\boldsymbol{\omega}\|$ which for the math sake will be changed to $J=\min \frac{1}{2}\|\omega\|^{2}$
- but with the condition of good classification

$$
\begin{equation*}
y_{i}\left(\boldsymbol{\omega}^{\top} \mathbf{x}_{i}+\omega_{0}\right) \geq 1, \quad i=1,2, \ldots, N \tag{2}
\end{equation*}
$$

- the vectors $\mathbf{x}_{\mathbf{i}}$ that satisfy $y_{i}\left(\boldsymbol{\omega}^{\top} \mathbf{x}_{i}+\omega_{0}\right)=1$ are called support vectors

Optimization of the SVM criterion

- to optimize a criterion with conditions we make use of the Lagrangian multiplicator

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\omega}, \omega_{0}, \boldsymbol{\lambda}\right)=\frac{1}{2} \boldsymbol{\omega}^{\top} \boldsymbol{\omega}-\sum_{i=1}^{N} \lambda_{i}\left[y_{i}\left(\boldsymbol{\omega}^{\top} \mathbf{x}_{i}+\omega_{0}\right)-1\right] \tag{3}
\end{equation*}
$$

- we need to find the minimum of \mathcal{L}
- we use partial derivations

$$
\begin{align*}
\frac{\partial}{\partial \boldsymbol{\omega}} \mathcal{L}\left(\boldsymbol{\omega}, \omega_{0}, \boldsymbol{\lambda}\right) & =0 \tag{4}\\
\frac{\partial}{\partial \omega_{0}} \mathcal{L}\left(\boldsymbol{\omega}, \omega_{0}, \boldsymbol{\lambda}\right) & =0
\end{align*}
$$

- to optimize a criterion with conditions we make use of the Lagrangian multiplicator

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\omega}, \omega_{0}, \boldsymbol{\lambda}\right)=\frac{1}{2} \boldsymbol{\omega}^{\top} \boldsymbol{\omega}-\sum_{i=1}^{N} \lambda_{i}\left[y_{i}\left(\boldsymbol{\omega}^{\top} \mathbf{x}_{i}+\omega_{0}\right)-1\right] \tag{6}
\end{equation*}
$$

- this leads to the solution

$$
\begin{align*}
\boldsymbol{\omega} & =\sum_{i=1}^{N} \lambda_{i} y_{i} \mathbf{x}_{i} \tag{7}\\
0 & =\sum_{i=1}^{N} \lambda_{i} y_{i} \tag{8}
\end{align*}
$$

Dual form

- we make use of the dual form of the problem
- we take the primal solution and substitute it to the primal problem and find the maximum

$$
\begin{equation*}
\min _{\boldsymbol{\omega}, \omega_{0}}\left(\frac{1}{2} \boldsymbol{\omega}^{\top} \boldsymbol{\omega}-\sum_{i=1}^{N} \lambda_{i}\left[y_{i}\left(\boldsymbol{\omega}^{\top} \mathbf{x}_{i}+\omega_{0}\right)-1\right]\right) \tag{9}
\end{equation*}
$$

- becomes

$$
\begin{equation*}
\max _{\lambda}\left(\sum_{i=1}^{N} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right) \tag{10}
\end{equation*}
$$

- maximizing this equation yields the solution for λ_{i} which when substituted to the equation $\boldsymbol{\omega}=\sum_{i=1}^{N} \lambda_{i} y_{i} \mathbf{x}_{i}$ give us the solution for ω

Soft-margin

- when the classes are linearly non-separable

- vectors that are correctly classified: $y_{i}\left(\boldsymbol{\omega}^{\top} \mathbf{x}_{i}+\omega_{0}\right) \geq 1$
- vectors that are correctly classified but lie in the margin:

$$
0 \leq y_{i}\left(\boldsymbol{\omega}^{\top} \mathbf{x}+\omega_{0}\right)<1
$$

- vectors that are misclassified: $y_{i}\left(\boldsymbol{\omega}^{\top} \mathbf{x}+\omega_{0}\right)<0$
- this can be written as:

$$
\begin{equation*}
y_{i}\left(\boldsymbol{\omega}^{\top} \mathbf{x}+\omega_{0}\right) \geq 1-\xi_{i} \tag{11}
\end{equation*}
$$

- the goal is to find the hyperplane that maximizes the margin and minimizes the number of points for which $\xi>1$
- this leads to a new formulation of the problem:

$$
\begin{gather*}
J\left(\boldsymbol{\omega}, \omega_{0}, \boldsymbol{\xi}\right)=\frac{1}{2}\|\boldsymbol{\omega}\|^{2}+C \sum_{i=1}^{N} I\left(\xi_{i}\right) \tag{12}\\
I\left(\xi_{i}\right)= \begin{cases}1, & \xi_{i}>0 \\
0, & \xi_{i}=0\end{cases} \tag{13}
\end{gather*}
$$

Kernel Trick

- in the solution of the SVM:

$$
\begin{equation*}
\max _{\lambda}\left(\sum_{i=1}^{N} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right) \tag{14}
\end{equation*}
$$

- we can see the dot product of x_{i}, x_{j}
- this can be efficiently written with the kernel trick as

$$
\begin{equation*}
\max _{\lambda}\left(\sum_{i=1}^{N} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right) \tag{15}
\end{equation*}
$$

- this represents a transformation of the vectors into a higher dimension
- in this higher dimension the vectors can be linearly separable

Kernel Types

Type of kernel	Formula	Note		
Polynomial	$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i} \mathbf{x}_{j}+\theta\right)^{d}$	Parameter d and threshold θ is chosen by user.		
Sigmoid kernel	$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\operatorname{tahh}\left(\eta \mathbf{x}_{i} \mathbf{x}_{j}+\theta\right)$	Parameter η and threshold θ is chosen by user.		
Gauss kernel Radial Basis Function (RBF)	$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\\|^{2}\right)$	Parameter σ is is chosen by user.		

Decision Tree

- non-linear classification method, the model is based on oriented graph \rightarrow tree

Decision Tree

- non-linear classification method, the model is based on oriented graph \rightarrow tree
- belongs to a family of models - Classification And Regression Tree (CART)

DEPARTMENT OF CYBERNETICS

- method uses binary decision tree T consisting of nodes \rightarrow elements of feature vector $\mathbf{x} \in X$ are evaluated via a condition

- method uses binary decision tree T consisting of nodes \rightarrow elements of feature vector $\mathbf{x} \in X$ are evaluated via a condition
- the tree then represents a gradual segmentation of the feature space X into disjunct regions

- each region represents one and only one class

- each region represents one and only one class
- the feature space is divided into rectangular regions (the region boundaries are parallel to axis of feature space)

- each region represents one and only one class
- the feature space is divided into rectangular regions (the region boundaries are parallel to axis of feature space)
- the inequations in nodes $x_{i} \leq \alpha$ is known as the decision rule

Classification and Learning:

- classification proceeds by comparing an unknown vector in the nodes of the tree
- the unknown vector then falls into one of the leafs which represents a class
- usually the learning is supervised (learning with teacher)
- straightforward way of training \rightarrow the regions are constructed by comparing values in individual dimensions of the vector \mathbf{x} with a threshold, $x_{i} \leq \alpha, x_{i}$ is the $i^{t h}$ element of the feature vector \mathbf{x} and α is a threshold

Rules of the construction of the decision tree:

- the first node (root) of the tree contains the whole training set, $X_{s}=X$
- every next node s contains the subset $X_{s} \subset X$ given by the decision rule of the previous node
- the decision rule divides X_{s} into two subsets $X_{s T}$ (TRUE) and $X_{s F}$ (FALSE)
- the division must fulfill:

$$
\begin{gathered}
X_{s T} \cap X_{s F}=\emptyset \\
X_{s T} \cup X_{s F}=X_{s}
\end{gathered}
$$

- from all the possible divisions of X_{s} we pick just one, which is optimal given a division criterion

On choosing the decision rule

- the decision rule in the form $x_{i} \leq \alpha_{i}$, where α_{i} is a threshold $\alpha_{i} \in \mathrm{R}$ divides the feature vectors based on the comparison of the $i^{t h}$ dimension of the feature vector
- thanks to the train set X it is possible to enumerate a finite set of values for computing α_{i}
- for the $i^{\text {th }}$ dimension of feature space the values of all feature vectors on this dimension are ordered ascending \rightarrow we have a finite set of values for computing the threshold
- in a given node we can enumerate all the possible values from all the dimensions x_{i}
- from this set of possible divisions (values of the threshold) we need to choose such that will divide the given set of feature vectors "the best" \rightarrow we need a metric (eg. Gini impurity, variance reduction, information gain, ...)

Information gain approach

- let $P\left(\omega_{i} \mid s\right)$ be the probability of vectors in the set X_{s} belonging to the class ω_{i}
- the information gain is based around the entropy:

$$
\begin{equation*}
I(s)=-\sum_{i=1}^{M} P\left(\omega_{i} \mid s\right) \log _{2} P\left(\omega_{i} \mid s\right) \tag{16}
\end{equation*}
$$

- this equation represents the rate of entropy of the node s
- the probabilities $P\left(\omega_{i} \mid s\right)$ are estimated by $\frac{N_{s}^{i}}{N_{s}}$, where N_{s}^{i} is the number of vectors in X_{s} belonging to class ω_{i} and N_{s} is the total number of vectors in the subset X_{s}
- after dividing X_{s} into two subsets $X_{s T}$ a $X_{s F}$, where $X_{s T}$ is composed of $N_{s T}$ vectors and $X_{s F}$ is composed of $N_{s F}$ vectors, the information gain (of this division) is:

$$
\begin{equation*}
\Delta I(s)=I(s)-\frac{N_{s A}}{N_{s}} I\left(s_{A}\right)-\frac{N_{s N}}{N_{s}} I\left(s_{N}\right) \tag{17}
\end{equation*}
$$

where $I\left(s_{A}\right), I\left(s_{N}\right)$ are the rates of entropy of nodes s_{A} and s_{N}

- the goal of the training is to find for each node s such division for which the information gain $\Delta I(s)$ is maximized

Stopping criterion

- is used to stop the process of division and thus creating a leaf node
- one option is to set the minimal number of training vectors in the node
- another option is to set a minimal information gain that is needed for the division

Classification

- a leaf node s represents the class for which there are the most training vectors in the leaf node
- each leaf node represents one class ω_{j}, where j is

$$
\begin{equation*}
j=\underset{i}{\operatorname{argmax}} P\left(\omega_{i} \mid s\right) \tag{18}
\end{equation*}
$$

Other options of constructing the tree:

- the decision rule can have the form of $\sum_{i=1}^{l} c_{i} x_{i} \leq \alpha$
- we are not looking for thresholds but for parameters of a hyperplane that divides the feature space into two subsets
- when considering two dimensional feature space and by rearranging the expression we obtain: $c_{1} x+c_{2} y-\alpha \leq 0$
- which is a general form of equation of a half-plane
- can be more suitable in some cases, but the construction of the tree is more complex

Decision forest

- a disadvantage of the decision tree is the sensitivity to the training set, so called bad generalization
- a small change in training set X results in change of topology of the whole decision tree T
- this drawback is compensated by using more trees in the training/testing phase
- principle: for one training set we construct several different trees

Training:

- the training set X is divided into several training sets $X_{(t)}$ by utilizing the bootstrap aggregating algorithm

Classification:

Training:

- the training set X is divided into several training sets $X_{(t)}$ by utilizing the bootstrap aggregating algorithm
- each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \leq N$, but the cardinality of the set remains N (the elements may repeat)

Classification:

Training:

- the training set X is divided into several training sets $X_{(t)}$ by utilizing the bootstrap aggregating algorithm
- each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \leq N$, but the cardinality of the set remains N (the elements may repeat)
- for each set $X_{(n)}$ a decision tree is constructed Classification:

Training:

- the training set X is divided into several training sets $X_{(t)}$ by utilizing the bootstrap aggregating algorithm
- each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \leq N$, but the cardinality of the set remains N (the elements may repeat)
- for each set $X_{(n)}$ a decision tree is constructed Classification:
- unknown vector \mathbf{y} is inputed into all decision trees

Training:

- the training set X is divided into several training sets $X_{(t)}$ by utilizing the bootstrap aggregating algorithm
- each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \leq N$, but the cardinality of the set remains N (the elements may repeat)
- for each set $X_{(n)}$ a decision tree is constructed Classification:
- unknown vector \mathbf{y} is inputed into all decision trees
- each decision tree outputs the class ω_{i} for the unknown vector y

Training:

- the training set X is divided into several training sets $X_{(t)}$ by utilizing the bootstrap aggregating algorithm
- each set contains $N_{(t)}$ unique feature vectors, with $N_{(t)} \leq N$, but the cardinality of the set remains N (the elements may repeat)
- for each set $X_{(n)}$ a decision tree is constructed

Classification:

- unknown vector \mathbf{y} is inputed into all decision trees
- each decision tree outputs the class ω_{i} for the unknown vector \mathbf{y}
- index i of the final class is chosen as the most frequent result, alternatively we may compute the probability for each class as $P\left(\omega_{i} \mid \mathbf{y}\right)=\frac{1}{T} \sum_{t=1}^{T} P_{t}\left(\omega_{i} \mid \mathbf{y}\right)$

Náhodný rozhodovací les (Random Decision Forest)

- the same principle as the decision forest \rightarrow lowering the sensitivity of classification on the training set
- ... but also
- goal 1: lowering the correlation of the trees in the forest
- goal 2: make the training faster (especially for higher dimensions)

Real-time classification of depth data from MS Kinect into individual parts of human body (Microsoft Research, 2011):

[Jamie Shotton et al 2011]

Training

1. division of the training set X into T sets $X_{(t)}$ using bootstrap aggregating (the same)
2. we choose a parameter $m(m \ll I$, where I is the dimensionality of $\mathbf{x} \in X$)
3. for one tree in a given node \leftarrow the decision rule is determined based only on randomly chosen m dimensions
4. after the tree is trained, choose another m dimensions and train another tree, and so on
Classification

- an unknown vector \mathbf{y} is inputed into all the trees
- index i of the final class is chosen as the most frequent result, alternatively we may compute the probability for each class as $P\left(\omega_{i} \mid \mathbf{y}\right)=\frac{1}{T} \sum_{t=1}^{T} P_{t}\left(\omega_{i} \mid \mathbf{y}\right)$

Effect of the size of the forest:

Effect of the depth of the trees:

[Criminisi et al, 2011]
CYBERNETICS

