Lesson 09

Convolutional Neural Network - Advanced Techniques

Ing. Marek Hrúz, Ph.D.

Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

Nesterov Momentum

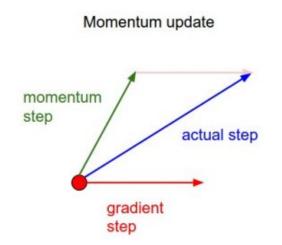
- This method is already well established and recommended to use
- The idea is first go to the point where we should end up (the momentum gradient direction v^t)
- Then correct the estimate by computing the gradient in the "look-ahead" point

$$\omega^{t+1} = \omega^t + v^t - \epsilon \cdot \nabla L \left(\omega^t + v^t \right)$$
(1)

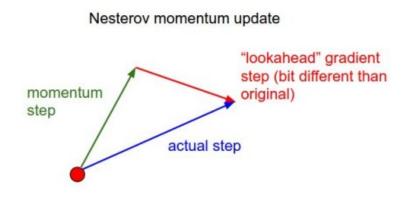
- where $v^t = \alpha \cdot v^{t-1} \beta \cdot \epsilon \cdot \omega^{t-1} \epsilon \cdot \nabla L(\omega^{t-1})$ is the momentum
- ► For comparison with classical momentum:

$$\omega^{t+1} = \omega^t + v^{t+1} \tag{2}$$

Nesterov Momentum vs. Momentum



Nesterov Momentum vs. Momentum

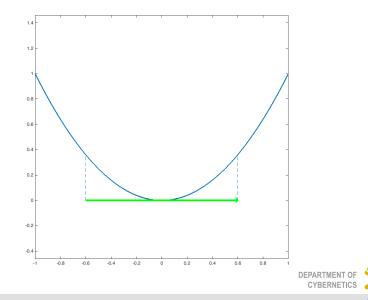


- There are drawbacks of static learning rates
- The learning rate is also global bad
- There is a way to estimate the learning rate from the gradient estimate
- The gradient is the direction and rate of the largest growth of a function
- ► But we apply the gradient in the **domain** of the function

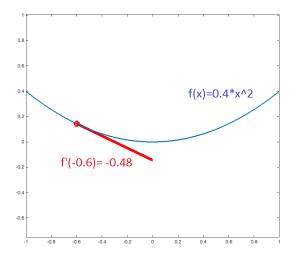
Gradient visualization



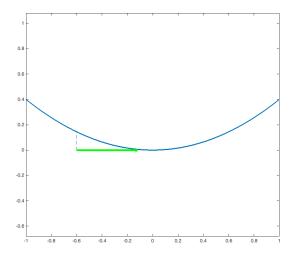
Gradient application



Gradient visualization



Gradient application



Lesson 09

Per-parameter adaptive learning rate methods

- A steep function has a large gradient but steepness (intuitively) means that we are close to local extreme - the step should be small
- A shallow function has a small gradient but shallowness (intuitively) means that we are far from extreme - the step should be large
- ► We can make use of this we apply an adaptive learning rate

We introduce an parameter of cumulative squared gradient magnitudes:

$$\sigma_i = \sigma_i + \|\nabla J\left(\omega_i^t\right)\|_2^2 \tag{3}$$

$$\omega_i^{t+1} = \omega_i^t - \frac{\epsilon}{\sqrt{\sigma_i + \xi}} \nabla J\left(\omega_i^t\right) \tag{4}$$

- where ξ is a small constant, ω^t_i is a vector of weights of ith neuron
- The method is aggressive and updates of gradients go to zero (since σ_i always grows)

Adadelta & RMSProp

- Adadelta is the reaction to weak point of Adagrad (dying updates)
- The always growing magnitude of gradient history is replaced by a running average

$$\sigma_i = \gamma \sigma_i + (1 - \gamma) \|\nabla J(\omega_i^t)\|_2^2$$
(5)

 The learning rate is also approximated (we want it to have the same hypothetical units as gradient) as a running average of parameter updates

$$\epsilon^{t+1} = \gamma \epsilon^t + (1-\gamma) \Delta \omega_i^t \tag{6}$$

Then we can write the update as

$$\omega_i^{t+1} = \omega_i^t - \frac{\sqrt{\epsilon^t + \xi}}{\sqrt{\sigma_i + \xi}} \nabla J\left(\omega_i^t\right) \tag{7}$$

 Independently discovered RMSProp neglects the learning rate approximation

Adam

 Adaptive Moment Estimation (Adam) additionally approximates the running average of non-squared gradients (first moment)

$$m_i = \beta_1 m_i + (1 - \beta_1) \nabla J\left(\omega_i^t\right)$$
(8)

 The running average of squared gradient magnitudes is kept (second moment)

$$\mathbf{v}_{i} = \beta_{2} \mathbf{v}_{i} + (1 - \beta_{2}) \|\nabla J\left(\omega_{i}^{t}\right)\|_{2}^{2}$$

$$\tag{9}$$

The update becomes:

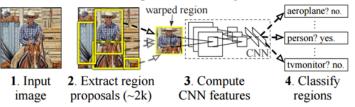
$$\omega_i^{t+1} = \omega_i^t - \frac{\epsilon}{\sqrt{v_i + \xi}} m_i \tag{10}$$

Object Detecting Networks - time-lapse

13/33

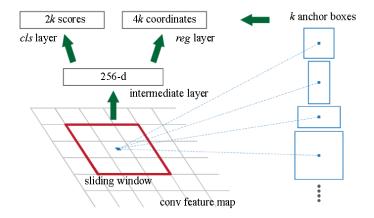
- ► R-CNN
- Propose regions selective search, that is merging of super pixels (2 sec per image)
- Extracts features from warped proposals
- Train per class SVM on CNN features

R-CNN: Regions with CNN features



- ► Faster R-CNN
- Two modules that share parameters:
 - Region proposal model
 - Classification module
- ▶ Region proposal a small CNN is applied to the last layer of a pre-trained CNN (VGG-16; 14 × 14 × 512)
 - ► The small CNN is a convolutional layer (with n × n kernels) followed by a fully connected layer (512 dim)
 - After that there are two FC layers 2k neurons for objectiveness and 4k neurons for location

Region Proposal Network



DEPARTMENT OF CYBERNETICS 16/33

- k is the number of anchor boxes
- The anchors have different sizes and aspect ratios
- In original paper they use 3 sizes and 3 ratios
- ► The outputs of the 2k and 4k FC layers are relative to the position and size of the appropriate anchor box

Region Proposal Network - learning

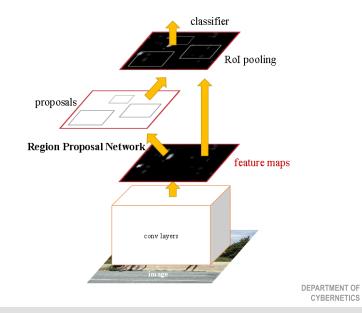
- The targets are deduced from the ground truth data (annotated regions of objects)
- ► Each anchor that has Intersection over Union (IoU) greater than 0.7 is considered a positive sample
- ► The objectiveness of such anchor (in 2k FC layer) is set to positive
- ► The regression of the anchor (position and size) is computed from the ground truth region
- ▶ Negative anchors are such that have IoU lower than 0.3
- The loss is defined as:

$$L(\{p_i\},\{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*)$$
(11)

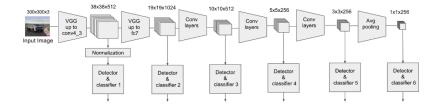
• L_{cls} is a 2 dim softmax, L_{reg} is a smoothed L^1 -norm

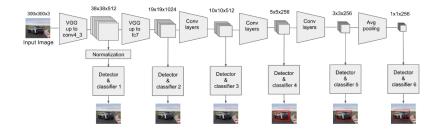
- ► Uses Fast R-CNN
- The weights are shared the same features are used for proposal and detection
- Each proposed region is recognized but watch out! the regions have different sizes
- That is why you need to use the ROI max-pooling
- This is quite hard to implement and is deprecated by Single Shot Multi-Box Detector
- ▶ ... thus, need not to learn (YEAH!)

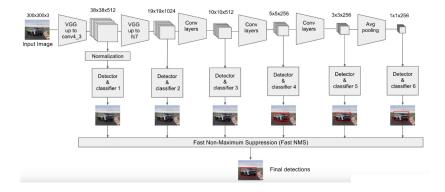
Region Recognition - Detection Network



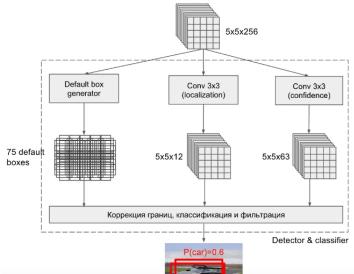
20 / 33





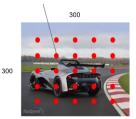


Detection and Classification

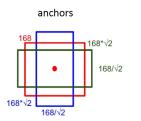


25 / 33

location of center of anchors

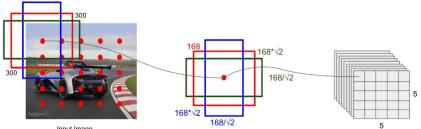


Input Image



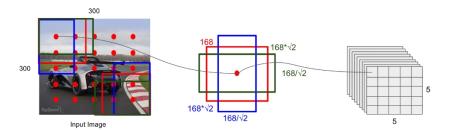
feature maps

Lesson 09

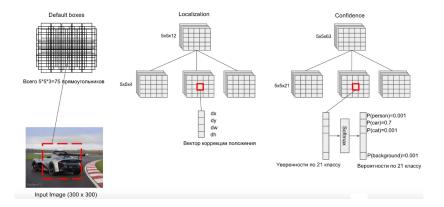


Input Image

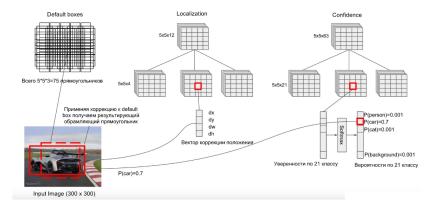
Lesson 09



SSD - all together



SSD - all together



Lesson 09

- Each ground truth box is matched to the default box (anchor) with the best Jaccard overlap (IoU)
- Each GT box thus has only one matching default box
- This is extended by adding default boxes with at least 0.5 Jaccard overlap
- From these matches the deltas of x, y, width, and height are computed and also the classifier gets its label

Training Objective

$$L(x,c,l,g) = \frac{1}{N} \left(L_{conf}(x,c) + \alpha L_{loc}(x,l,g) \right)$$
(12)

- ➤ x is the predicted class, c is the GT class, l is the regressed deltas of default boxes, g is the GT deltas
- ► N is the number of matched default boxes
- L_{loc} is a smooth L^1 loss, L_{conf} is softmax

$$L_{loc} = \sum_{i} \operatorname{smooth}_{L1} \left(I_i - g_i \right)$$
(13)

$$\operatorname{smooth}_{L1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise} \end{cases}$$
(14)

Hard negative mining

- After matching a lot of default boxes will be negatives (background class)
- This gives an imbalanced training set with lots of default boxes
- ► The negatives are ranked according the confidence
- Only a portion of the negatives if chosen (3:1) for the gradient update
- Data augmentation:
 - Use the entire original image
 - ► Sample the original image so that the patches have IoU with the object at least 0.1, 0.3, 0.5, 0.7, or 0.9
 - Randomly sample the image into patches

