Deep Neural Networks

NSES — Lecture

Miroslav Hlavac

ion function

t

Perceptron

* Weighted sum of inputs and bias

* Followed by activa

 Mathematical approximation of biological
neuron

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
M

wp
“

=
B!
B
e - c o
2 O |8 a
£ = - 8
$5 o |8°
= Zz B
- o -~
5 & %3
E o C 3
E by 3 X
=3 L WX
5 L - = .
< B
e, ,,./
& d T
= \ X N
2 i N f A ./1

MLP — Multi Layer
Perceptron

* |nput layer

idden layer
e Qutput layer

H

Output Layer

Hidden Layer

Input Layer

Activation Functions

Linear

Linear Function

* fx)=x
Sigmoid

Hyperbolic Tangent

* f(x) = tanh(x) . -

. R(z)=max(0, z)
Rectified Linear Unit - RelLU
e f(x) = max(0,x)

Error/Loss Function

* Performance metric based on desired and actual output of the network
* The first thing that comes to mind — error = output jecireq — OULPUL 4 ctual

» This error has a problem in being negative when the network overshoots and
positive when it undershoots — absence of real minimum

* It leads us to absolute error - error = |output,cireq — OULPUL fctuall

* This error function has minimal value when both outputs are the same — 0, but
the training algorithm cannot differentiate between lot of small errors and few
big errors

* Lets introduce sum of squares of the absolute errors to differentiate between small
and big errors

. 2
e = ZloutPUtdesired o OUtPUtactuall

Backpropagation

* The full meaning is “the backward propagation of errors”

* Backpropagation algorithm
* Propagation
e Forward pass to generate network output
 Error calculation

* Backpropagation of errors through the network to generate the difference
between targeted and actual real values for all outputs and hidden
neurons

* Weight update

The network is considered deep when it has more than one hidden layer

e Basic example is Input layer + 2 Hidden layers + Output layer

As the computer hardware evolves the number of hidden layers —
complexity of DNNs - is increasing

e A research was done to find a relation between number of hidden layers (parameters) of a
network and it’s ability to solve complex problems — paper Deep Residual Learning for Image
Recognition (2015) [ResNet]

e This paper introduced methods to achieve trainable networks with hundreds of layers and
compared their results on performing the task of image classification

. :
. -
. .
- -
- -
. .
- -
- -
- -
. .
- -
- -
. -
. c .
. O .
. = .
- -
W a = W
. C .
. ab .
N N
(D) S .
S .
. .
W) m.u. o W
.) ®) .
- o o W
- T .
W O O .
. ?. QD o .
.)) < .
. 5 o @ .
. -
. - = < et .
. ik o -
. O o © - c) Ww
. Cee - o .
| o ~ D O m & .
. - sfe .
. O v W o O -
. = &b e O + < .
. (] =S (g .
| o = @ w .
. o O - o) £ -
. o > .
. (v n C a4 = QO .
. 2 it = L ¢ .
. T 0 © @) .
. = = - 0
. v o @ = @) o .
. e = D = = 9 o .
. O x v o 'S5 0 .
. @ L o < - g < = wn .
. O .
W W m s e D o o & . 4 e W
. ! S L - W
. .
W ® ° L o M
. .

¥ =
4 prer}
g :
£ =
© T
: :
i o
- ©

@
<
[=Ts]
v
n

Deep Neural Network Topology

* The hidden layers in DNN can be arranged in different structures
 Most common is the Fully-connected layer

Different layers are suitable for different tasks

There is no exact recipe how to form a network topology for a given task

DNN can combine forward and recurrent layers, apply regularization and pooling
after each layer output and many more trick to improve the ability of the whole
network to perform a given task better

Each layer is usually followed by an activation function

Different types of layers

.
W
. 5 W
. & > .
. C 0 L .
5 < =
. O o o) 5 .
. . — c - .
. : o) © .
. o) =) .
. O £ = > @ v .
. ~ T o .
. g . - W
. -) - 0 .© .
= o) = © = o .
. O = = D = .
W < > 2 L W
L0 g 2 7 1 &a8Z
. e) . o= .
. 1 = O 5 2 - 5 M
. Vl = ¢ e T Q M
M (O c e_ = = > = W
. O o o = - = .
. O ag = 2= 30 .
. £ o2 O o .
. o & & 3 835 W
. n s B 9 - W .
. i - = 0 .
. £ n .IWx .
. 5 w e 03 U, e x o .
. . -0 8¢ ®B =8 .
. - s = SE © .
. = 2 ds =2 B 5%
. =& =9y 5= g 20 .
. 0 © o E = 2 B .
. — o em s .
L ¢ 8 © 4 uc = = .
. o4 ® - . 4 oo g .
. F S Wi F O Z F O W
W L o o L o o WM
. .

.

.

by
b
bn

Convolutional Layer
produces a dot product between the data and

picture represents a 2D example) and
the weights in the filter

produced by the filters

 |tis defined by the number of filters, size of
the kernel is moved

* This layer is composed of a set of trainable
* The output is a stack of activation maps

» During forward pass the filter is

////__ VAV A
VAL ANV
VATV A

ARRuREN

LAV A VLA

Recurrent Layer

* Implemented as a set of recurrent units(cells)

* Types of cells:
» Simple RNN — classical recurrent network

» Gated Recurrent Unit (GRU) — implements reset
gate

* LSTM —implements input, output, and forget gate

* Convolutional LSTM — input and recurrent
transformations are implemented as convolutions

hidden units |

output units

Seee

Seee)

input units context units

Wyg
N

.
. -
. .
. -
. -
. o .
=
. .
. C .
. = .
. (© .
. .
W & o W
. 8] v .
. 0 .
. .
. - © = .
. = t .
. = v .
. © .
. D -
. VI o .
(O -
. ®) .
. e © .
W _ — W
. = s .
o v .
N a— -
. H .
Qo : = W
. = .
. -
. = .
. L v .
. G
. i & © .
-
O 2 :
E = £
@) & [o5
cg & =E
. £ G = - 8 = . .
. 258 SJo &= x .
. Q) o= U : .
. oo O -
. = o O < L .
. = .
. o = E .
. ® = O -
. . . . -
. O a .
. o .
W o 9 oo W
. .
. -
. .
W@
(s 0] <t
({®) (40]
w
-
(5]
—
= A
(8]
>
o
o=
=
P
o T
Q'
oG
>
c 2
Ewm
w [
7]
<
@
o
&
—_ | n (40) =
o)

Response Normalization

» Simulates biological concept of lateral
inhibition
* Capacity of excited neuron to outweigh
the activity of neighbors
» Batch Normalization
* Normalizes the outputs of the connected
layer to have zero mean/unit variance
* Dropout

* Sets the output of randomly selected
outputs to zero

Classification Layer

» Softmax
» Defined by a function

e’
.
* This function transforms the input vector to values between (0; 1) and their
sum to be one

» Used for classification tasks

e Qutput values O'(Z)]- correspond to probabilities of the input to belong to the
class j

» Targets for the training are so called one-hot-vectors

7 7
. .
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
(o’
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
_
. e .
7 7
7 7
7 7
7 7
7 7
7 7
5.0 s . ///
»/ .
{o’ o 7
//, .
7 7
7 7
7 7
7 7
7 7
5’/ . . “pe . . . 7
. o .
7 7
7 7
7 7
7 7
7 7
7 7
. s p. . . . »/{
3" o .
7 - 7
7 7
»/ .
7 7
»/ .
7 7
»/ .
7 7
»/ .
7 7
7) 7
7 7
»/ .
7 7
7 * 7
7 7
. o .
5’/ - - %

, .
?’ ’ ’ ?2
4,4 4/4
»/ .
7 7
»/ .
7 7
»/ .
7 7
»/ .
7 7
. . .
. o .
7 7
»/ .
7 7
»/ .
7 7
»/ .
. »/{
»/ .
. ® .
// .
7 7
// .
7 7
»/ .
7 7
»/ .
7 7
»/ .
7 7
//, .
7 7
7 7
7 7
7 7
. o .
7 7
7 7
7 7
7 7
7 7
»'/ ~ | .

7 7
5/. . o~ .
. o — . — . . _
_ . {,,
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
»/ .
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7

o -
. g - = .
. 2 .
. cE = |
. o = .
. o Y O 4 .
. ;o - = 8 > .
. 2 Es =
. - ® 3 bp = .
. = W
. - c = o - O .
. v = = © .
. © . = = -
. © = o == .
. { © = Q © ap .
N v O -
. G e B e = |
. - £ .
.) >0 = = .
G 2 . "o
. (®) .
. O C ®) 3 .
. * = .
. £ = 5 = .
- = - @ -
W = © = = W
. T £ © @ D .
. - = s e 2 < .
. o 3] 05 J] .
. 80 = o a e .
N o \
W — D o v © .
. - - 0= P e) |
. 4+ = E ®© 5 © & .
. n @ o + .
. © e) O .
. (O O & v e © .
. 0 < 0 .
N ie £5 @ 94
. 4 = o= o = .
. s = s 0 o C .
.] = U v = 0 .
. + o=~ %= £ B L O |
. o0 4o e B e .
. w0 B s - W
W o m— > B O B = = O .
S = O i@ e a - N
. = 7y (w1 .
- e s U (5 ® ol o] -
. =2 © e - .
. p S @ o - O3S B D% @ .
. &9 O o = .
N = . = e O‘ = W
. o @ © .
W & =
W = 0 o vy W
| .
W 9 L L L W
N .
. .

— Mini-batch gradient Descent
— Stochastic gradient descent

-
c
Q
Q
wv
Q

©

—
=

P

©
©
e
+11]

-
Q

=
3]

(an]

Optimization — Mini-Batch Gradient Descent

Most commonly used implementation

Splits the dataset into small batches

The errors and gradients are calculated for each sample in the batch

No need to keep all the data in memory, just the batch

Hyperparameters
* Learning rate
e Batch size
e Learning rate decay

Optimization — Tricks to
improve the convergence of R
GD oss
* Selection of initial value of learning

rate is very important for
convergence of GD

low learning rate

* Learning rate decay
* Progressive

good learning rate

high learning rate

Optimization — Tricks to
improve the convergence of
GD

* Wiy = W — YVL(w¢)
* Momentum
e Nesterov Momentum

» Weight decay

* W = W — YVL(we) — YAwy

Momentum update

momentum

step
actual step
gradient
step
Nesterov momentum update
“lookahead” gradient
step (bit different than
momentum original)
step

actual step

Optimization — Adagrad

* Adapts the learning rate to the parameters
* Smaller updates to frequent features
e Larger updates to infrequent features

* The learning rate is updated based on a sum of past gradients computed for each
parameter separately

* Eliminates the need for selecting the starting learning rate

* The problem of the cumulative sum is it will grow indefinitely during the training
process effectively shrinking the learning rate to zero

Optimization — RMSprop and Adadelta

* Developed simultaneously to solve the problem of diminishing learning rate of
Adagrad
* Adadelta takes only selected window of past gradients into account
* Implemented as decaying average of past squared gradients

» Solves the difference between hypothetical units of updates and parameters
by approximating as the running average of previous updates

* RMSprop
e Same update as Adadelta but neglects the difference in units
* Not published in any paper, proposed in a Lecture on Cursera

Optimization — Adam

» Adaptive Moment Estimation
* Computes adaptive learning rate for each parameter

* |n addition to Adadelta stores also the exponentially decaying average of past
gradients, similar to momentum

Comparison of GD extensions

N \\ BT e
— SGD /f;f' | N — SGD -
- Momentum /j_.(-/-f"" - Momentum
iy — NAG — ——— NAG
i = Adagrad |
L agra agra
Adadelta Adadelta
Rmsprop Rmsprop
2 _;
0
-2

et e
TS OC
e

1.0

X
R
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
\

i

N

-

D

TR
A .

\

- Deep Neural Network

Y
-

\

* Main problems during training of DNN

e Gradient vanishing and gradient explosion

* The backpropagation algorithm updates the consecutive weights
proportionally to the partial derivative of the error function

e Overfitting

» Very good result on training data, bad results on testing data

* Degradation

» Despite increasing the number of layers the training accuracy is lowering

N N\ N
-

N\

N\
15533535313

\

77 7
_ -

Data augmentation

* The more parameters the network has the more data it will need to train itself for
a given task

» Data resources are still limited or protected by law
* For example medical images

* If we have only limited number of data we can increase the number by
performing augmentations

* Generally we can add noise with zero mean and variation of one
* For images we can add rotation, translation, etc..

* This will also make the network more robust to variations in testing data

Data augmentation

* General augmentations:
» Additional Gaussian Noise

» Typical types of augmentations for images:
* Flip
* Rotation
e Scale
» Crop
e Translation

Programing your own DNN

* Frameworks
* Tensorflow — Developed by Google
» Caffe
* Torch - PyTorch
* CNTK — Developed by Microsoft
e Chainer

e Hi-level API
* Keras

Keras

High level API for neural networks
Written in Python
Easy and fast

Supports all currently used types of layers
 Possibility to create own layers

Utilizes both CPU and GPU for computations

www.keras.io

Simple examples from Keras

e MLP — definition
model = Sequential()

model .add(Dense(64, activation='relu', input dim=20))
model .add(Dropout(0.5))

model.add(Dense(10, activation='softmax’))

* MLP — optimizer

sgd = SGD(1r=0.01, decay=1e-6, momentum=0.9,
nesterov=True)

Simple examples from Keras

e MLP — compilation
model.compile(loss='categorical crossentropy',
optimizer=sgd, metrics=[accuracy'])

* MLP — training
model.fit(x train, y train, epochs=20, batch size=128)

 MLP — evaluation
score = model.evaluate(x test, y test, batch size=128)

