

Deep Neural Networks State-of-the-art

NSES-Lecture Miroslav Hlaváč

ImageNet

- Large Scale Visual Recognition Challenge (ILSVRC)
 - In 2012 10 000 000 images
 in 10 000+ categories
 - Label is provided but location in the image is not
 - 150 00 images for testing
 - 3 tasks:
 - Classification
 - Classification with localisation
 - Fine-grained classification

ImageNet Examples

Image classification

Easiest classes

red fox (100) hen-of-the-woods (100) ibex (100) goldfinch (100) flat-coated retriever (100)

tiger (100)

hamster (100)

porcupine (100) stingray (100)

Blenheim spaniel (100)

Hardest classes

hatchet (68) water bottle (68) velvet (68) muzzle (71) loupe (66)

hook (66)

spotlight (66)

ladle (65)

restaurant (64) letter opener (59)

Task Definition

Task 1: Classification

AlexNet

- This network started the massive use of convolutional neural networks in 2012
- Utilizes ReLU activation function for the first time
- Originally written with CUDA
- First winner of ImageNet based on CNN

AlexNet Structure

- Basic structure idea comes from LeNet-5(1998)
 - CONV-POOL-CONV-POOL-FC-FC
- Normalisation Layers used between blocks
- Input size 227x227x3
- Total of 8 layers
- 62M Parameters

Softmax FC 1000 FC 4096 FC 4096 Pool 3x3 conv, 256 3x3 conv, 384 Pool 3x3 conv, 384 Pool 5x5 conv, 256 11x11 conv. 96 Input

AlexNet

VGG

- Evolution of AlexNet from 2014
- Introduces deeper structure of convolutions
 - Different number of stacks of convolutional layers followed by maxpooling
- Utilizing growing structure of convolution filters

VGG Structure

- Stack of Convolutions followed by Pooling layer
- Implements growing number of Convolutional filters
- All of the filters are 3x3
- No normalisation layers
- Two versions
 - VGG16 138M Parameters
 - VGG19 144M Parameters

FC 1000 FC 4096 FC 4096 Pool Pool Pool

VGG16

Receptive field

- The area visible to the network
 - The consecutive convolutional layers with kernels 3x3 and stride 1 has the same receptive field as one convolutional layer with kernel 7x7
 - The difference is in the number of parameters needed to train these layers
 - 7x7 -> 7x7xCxK (C number of channels, K – number of kernels)
 - For input with 3 channels and 64 kernels we get 9408 parameters
 - 3x3 -> 3x3xCxK + 3x3x64 + 3x3x64 = 1728 + 576 + 576 = 2880
 - There are also two more activation functions in the 3x3 stack

Inception

- Inception module represents an approach called NiN (Network in Network)
- Processing of data in different reception fields
- Outputs concatenated and filtered with 1x1 convolutional layer

GoogLeNet

GoogLeNet

- Deeper network consisting of 22 layers
- Fully convolutional 0 Fully connected layers
- "Only" 5 million parameters in total
- Winner of 2014 ImageNet competition

Residual Learning

- The problem with Very Deep Neural networks is the diminishing of gradients during backpropagation
- One of the solutions is to introduce so called skip connections that transfer unprocessed information from previous steps to next layers in the forward pass and also serve as a channel for unweighted gradient backpropagation during the backward pass

U-Net

- Special type of network implementing bottle neck with residual skip connections
- Convolutions for downsampling of the input
- Deconvolutions for upsampling
 - Deconvolution can be interpreted as convolution with transposed kernel

ResNet – very deep neural network

- First network to introduce skip connections – short-cuts in 2015
- Inspired by pyramidal cells in human brain
- Residual learning block:
- This approach improves the training process for very deep networks and allows successful learning with basic SGD algorithms

Resnet

- First Very Deep Neural Network
- Test with hundreds of layers
- Showed that more layers can improve results but only to a certain point
 - Trade of between speed a computing resources over accuracy

Figure 2. A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature map sizes via convolution and pooling.

Dense Net

- Inspired by skip connections from ResNet and other networks
- Implements several parallel skip connections dense blocks

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
		Deliserret-121			Deliserret-204
Convolution	112 × 112	7×7 conv, stride 2			
Pooling	56 × 56	3×3 max pool, stride 2			
Dense Block	56 × 56	1 × 1 conv	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 6$	1 × 1 conv	[1 × 1 conv]
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$3 \times 3 \text{ conv}$ $\times 6$ $\times 6$ $\times 3 \times 3 \text{ conv}$ $\times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$			
(1)	28 × 28	2×2 average pool, stride 2			
Dense Block	28 × 28	[1 × 1 conv] 12	[1 × 1 conv]12	[1 × 1 conv] 12	[1 × 1 conv] 12
(2)		$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} \times 12 \\ \text{conv} \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$
Transition Layer	28×28	1 × 1 conv			
(2)	14 × 14	2 × 2 average pool, stride 2			
Dense Block	14 × 14	[1 × 1 conv]	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 32$	[1 × 1 conv]	[1 × 1 conv]
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 64$
Transition Layer	14 × 14	1 × 1 conv			
(3)	7 × 7	2 × 2 average pool, stride 2			
Dense Block	7 × 7	[1 × 1 conv]	[1 × 1 conv]	[1 × 1 conv]	[1 × 1 conv]
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 48$
Classification	1 × 1	7 × 7 global average pool			
Layer		1000D fully-connected, softmax			

Dense block

- Each layer takes all the preceding feature maps as input
- Different topologies are described in the table
- This network actually uses less trainable parameters thanks to the skip connections

Visual Speech Recognition

LipNet – end-to-end lipreading

- Recurrent network for lipreading
- Implements 3D convolutions, Bidirectional Gated Recurrent Units(GRU), and Connectionist temporal classification

Spatio-temporal Convolution(3D Convolution)

- Special type of convolution with three dimensional kernel
 - Typically cube 3x3x3, but can be any size
- Enables analysis of dynamic(temporal) properties of sequences
 - In a video sequence analysis of changes occurring between frames
- Can be used in different configurations
 - Depth axis can span across the whole sequence

Bi-Directional GRU

Provides the ability to analyse the input sequence from both directions

(a) (b)

Structure overview

- (a) unidirectional RNN
- (b) bidirectional RNN

Connectionist Temporal Classification

- Special type of scoring function that looks at the output sequence as a whole
- Does not try to find the alignment between the input sequence and the output sequence
- Incorporates a blank symbol

WLAS – Watch, Listen, Attend and Spell

- Takes images and MFCC features as input to provide character-based output
- Audio and video parts can work independently
- Implements attention system – keeps track of synchronization between audio and video

Attention Mechanism

Provides a way to analyse the hidden states of a sequence as a whole

